
tension within the elastic layer, N/m2; Mi, vibrating mass of the elastomer, kg.sec2/m3; 
p, density of the elastomer, kg/m3; El, modulus of elasticity, N/m2; E i' = El/hi, rigidity 
of the elastic layer, N/m3; i, number of plate layer; s163 , complex modulus of elasti- 
city; E'(m), modulus of elasticity; E"(m), loss modulus; tan ~ = E"/s energy-loss coeffi- 
cient (the loss tangent); P, surface pulsation pressure, N/m2; Obend , bending stress in the 
plate, N/m2; G, shear modulus, N/m2; Hi, viscosity of the elastic layer, N.sec/m2; %, Lame 
parameter; K = % + 2/3G, volumetric modulus of elasticity, N/m2; ~k = G~k, shear viscosity, 
N'sec/m2; ~, portion of the boundary-layer energy accumulated in the elastomer; ~, dissipated 
portion of the energy; r I = ~/~, coefficient of absorption for potential energy; r 2 = (~ - 
T#)/~, coefficient of the potential energy of the boundary layer accumulated in the elastomer; 
C x, coefficient of frictional resistance; $ = (Cxrigid - Cxelast)Cxrigid -I, coefficient of 
reduction in frictional resistance. 
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INVESTIGATION OF EHD FLOW BASED ON A NUMERICAL SOLUTION 

OF THE NAVIER-STOKES EQUATIONS 

L. P. Pasechnik and I. V. Ufatov UDC 532.516 

The proposed numerical method is used to examine the physical pattern of EHD 
flow at a high-voltage flat electrode. 

Electrohydrodynamic (EHD) flows of low-conductivity liquids from a high-voltage electrode 
have been studied both theoretically and experimentally in numerous works (see, for example, 
[1-4]). Despite a superficial similarity in the EHD flow patterns and those of a Landau- 
Slezkin "submerged jet," the latter cannot be treated as a sufficiently exact model of EHD 
flow. In particular, in the case of an immersed electrode it makes no provision for the ef- 
fect of the friction of the jet against the wall of the vessel. An estimate i~ presented 
in [i] of the possible velocity of isothermal electrical convection as part of a study of 
the laminar flow of an incompressible dielectric liquid around an electrode. According to 
[1, 2] the flow is caused primarily by a Coulomb force acting on the space charge that is 
formed because of a nonuniformity in electrical conductivity that is weak but different from 
zero. A semiempirical formula was proposed in [I] for a steady-state charge, and by means 
of this formula it became possible qualitatively to describe the phenomena of electrical con- 
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Fig. i. Theoretical model of the flow region: A) counterelec- 
trode; B) conditional boundary of field uniformity; C) flat 
electrode; D) Plexiglas vessel lid. 

Fig. 2. Distribution of repulsive component of the EHD force 
at a voltage of 3.5 kV: i) at the axis; 2) transverse distribu- 
tion at a distance of 0.i cm from the electrode, x, mm. 

vection, but the calculated values of velocity are several times greater than the experimental 
values. 

In this paper, on the basis of the proposed numerical method of solving the Navier- 
Stokes equations with the aid of the Green's function, we have obtained the physical pattern 
of EHD flow in transformer oil at a high-voltage flat electrode embedded into a nonconducting 
wall. The calculated values of velocities are in good agreement with experimental data. 

The Navier-Stokes equations are solved by means of the Green's function in which con- 
sideration is given to the effect of the external field F=--~(E.V)E: 

p (v. V) v = VP q- [~V av q- F, (1) 

(2) 

Applying the div operator 

V.v = O, 

where p is density; ~ is dynamic viscosity; ~ = 0.3 mm/kV [I]. 
to (I), with consideration of (2), we obtain 

V~p = - -  p div (v.v) v + divF. (3 )  

We w i l l  t a k e  t h e  G r e e n ' s  f u n c t i o n  f o r  an unbounded r e g i o n  as t h e  G r e e n ' s  f u n c t i o n ,  and 
we w i l l  n e g l e c t  t h e  i n t e g r a l  o f  t h e  p r e s s u r e  o v e r  t he  b o u n d a r y  b e c a u s e  o f  i t s  s m a l l n e s s  in  
c o m p a r i s o n  w i t h  t h e  i n t e g r a l  o v e r  t h e  e n t i r e  r e g i o n  ( f o r  a d d i t i o n a l  d e t a i l s  s ee  [ 5 ] ) .  The 
o b t a i n e d  e q u a t i o n s  a r e  s o l v e d  by a d i f f e r e n c e  method,  and t h e  s o l u t i o n  i s  g i v e n  in  t h e  Ap- 
p e n d i x .  

The distribution of the electric potential is sought in the region shown in Fig. i. We 
find the potential by solving the Laplace equation A~ = 0 for given values of �9 at the boun- 
dary of the region, i.e., at the electrodes. The potential equal to zero (the counterelec- 
trode) is given for the surface A; the linear distribution of the potential is given for the 
surface B. Rounding off of the knife edge gives the nonuniformity of the electric field. 
The Laplace equation is solved by a grid method (see, for example, [6, 7]). The calcula- 
tions were carried out for a flat electrode with a curvature radius of 0.5 cm in transformer 
oil with a viscosity v = 28 St. Figure 2 shows the distribution of the repulsive component 
of the EHD force at a voltage of 3.5 kV at the axis and a lateral distribution of the repul- 
sive component of this force at a distance of 0.5 cm from the electrode. 

As a result of computer calculations, we obtained the physical pattern of the EHD flow. 
We can see from Figs. 3 and 4 that the EHD flow is primarily concentrated near the electrode. 
It is not difficult to see that the velocity, equal to zero at the beginning and end of the 
curves, corresponds to the absence of EHD flow in the transformer oil at the walls of the 
vessel (i.e., the condition of "adhesion" is satisfied). The curves exhibit a maximum at 
a distance from the electrode that is equal approximately to the radius of the electrode. 
Thus, the maximum value of velocities for voltages of 1.7, 2.1, 3.0, and 3.5 kV, respective- 
ly, amount to 1.3, 2.7, 7.8, and 13.4 mm/sec, and in this case the increase in the distance 
from the electrode, at which the maximum values are found for the calculated flows, is pro- 
portional to the value of the voltages, i.e., these distances become greater than the elec- 
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Fig. 3. Distribution of EHD velocities: i) at a voltage of 
1.7 kV; 2) at a voltage of 2.1 kV; points denote experimental 
data [3]. u, mm/sec. 

Fig. 4. Distribution of EHD velocities: i) at a voltage of 
3.0 kV; 2) at a voltage of 3.5 kV; points denote experimental 
data [3]. 

trode radius as the voltage increases. The obtained pattern of EHD flow corresponds to the 
experimental data [I]. 

APPENDIX 

The original system of equations (in dimensionless variables) has the form: 

1 (u~, - -  (Fix,  F2y,)/2)(x - -  (A. 1) 
+ ( y -  y,)~ 

1 (U2x , + uu,vx,  + F2y,)/2)(y' - -  y ' )  dx 'd9 '  + vV'ZO + F2, 
= ( x - -  x') ~ + ( y - -  y,)z 

(A.2) 

Here v = ~/ou~ u ~ and h are the units of velocity and length measurement. 

We will obtain the difference equations for some point with coordinates (xi, Yi) by ex- 
pansion in the neighborhood of this point of the functions u and v with accuracy to the third- 
order terms inclusively [6]: 

u = a + b x q - c y +  d x Z + e x y + f y  z + l x 3 + m x 2 y + n x y a + t ~ .  (A.3) 

The corresponding expression for v is similar in form and the coefficients a, b, c... are 
replaced by al, bl, ci .... From the continuity equation we obtain 

c, = - - b ,  e = - - 2 f i ,  31 = - - n  h, m = - - " 1 ,  n = - - 3 t  1, e I = - - 2 d .  ( A . 4 )  

To these  s ix  equat ions we w i l l  add the r e l a t i o n s h i p s  which a s soc i a t e  the  values  of the 
func t ions  a t  the points  having coordina tes  (x i ,  Yi),  (Xx• Yi), (x i ,  Yi• 

ux = u(x~+l, Yi) = a + b W d - + - c ,  ~ = u(x i ,  Yi+x) = a - 4 - c q - ~ - l - t ,  

u s = u ( x i _ l ,  Y i ) = a - - b q - d - - l ,  u ~ = u ( x t ,  Y t - x ) = a - - c + [ - - t .  (A.5) 

Having substituted expansion (A.3) into (A.I) and (A.2) and equating the coefficients 
for identical degrees x i and Yi, we obtain the system of equations 

ab .q- a1r = 2v (d .qt_ ~) = I 't- F, ,  ( A.  6 ) 

abl - -  atb = 2,; (dr 4- ~,) 4- J --]- F, ,  (A.7) 

bZ q- blc "4- 2 (ad - -  alfO + Ix -I- 6~ (l - -  t,) Jr- F,x , (A.S) 
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b z q- blc q- 2 (all 1 - -  ad) -= J,j q- 6v (t I - -  l) q- F2v, (A. 9 ) 

2 (ad I - -  axd) = Jx a t- 2v (3/~ - -  m) q- F2x, (A. l0  ) 

2 (axf - -  f~a) -=- J~ + 2,~ (m + 30 + FI~. (A. 11) 
Here I ,  I x ,  J . . .  a r e  t h e  v a l u e s  o f  t he  i n t e g r a l s  and t h e i r  d e r i v a t i v e s  in  (A .1 )  and 

(A.2), taken at the point (xi, Yi)" We will carry out the integration by dividing the re- 
gion into squares with a side equal to unity, with the exception of the neighborhood of the 
point (xi, Yi) where the sfde of the square is equal to two, and with the center at that 
p o i n t .  Thus,  l=Y ' eJk+eo Io ,  % = ( u T + u s - - u s - - u 6 ) "  + ( u 6 + u T - - u s - - u s ) ( v 7  + v s - - v s - - V e ) ,  u s = u ( x k ,  Yk), 
u6=(u~,  Yk+x), u7 =u(x~+l ,  Yh+O, us=u(xk+l ,  yk),where Xk and Yk a r e  t h e  c o o r d i n a t e s  o f  t h e  l e f t  
lower  node o f  t h e  s q u a r e  o v e r  which  t h e  i n t e g r a t i o n  i s  c a r r i e d  o u t ;  ~010 i s  t h e  c o n t r i b u -  
t i o n  at the singular point; 

xh+t Yh+l 
1 ( x - -  x' )  &=T'~z J" dx'S �9 ~ yh (xi - -  x')2 + (y~ - -  y,)2 dy'. 

Integrals Jk are obtained from I k by replacing x with y and by substituting x for y. 
For the singular point Ix0 = Jy0 = 1/4, I 0 = J0 = 0. 

The system of equations (A.2-A.II), written for each inside point of the grid, is 
solved by the Seidel method, proceeding from some initial distribution. 

Equations (A.6)-(A.7) are used to obtain improved values of a and at: 

a (b + 4v) q- alc = v (ul q- u~ -q- u8 + u~)/2 -t- I -Jr- FI, 

abl q- at (4v - -  b) = v (v I -f- v~ -t- v3 + v~)/2 -t- J -t- F2. 

The coefficients b, bl, c, etc., must be expressed in terms of the values of u and v 
at the nodes of the grid: 

I b = T  (t'l + u S - v ~ + v 4 )  + I'~ + 1 Fjx--F~ V ~ ( a t f  1 - a d )  n t- 24v - ' 

+ kl 1 / (  • + kl) 2 + b z =o 
Ii 2 i / 4 16 ' 

t =  3vl (ad, - -  aid q- all - -  fla - -  I v) - -  F2x--6v F'v - -  ll, 

l =  Ul--Us b, c l = - - b ,  t l =  v~--v~ 11, 
2 2 

c = (us - -  u4)/2 - -  t, 

bl = (ol - -  v , )  ll ,  
2 

where I x ' is the integral without any singular-point contribution; % 
the singular point; 

is the value of ~k at 

k = 

U 1 --17 s . x = k - -  u2--u~ __.F~x+F1~ ; k l = - - ,  
2 6v 2 

1 (ad, - -  a,d q- all - -  [ l a - -  lv)i ~._qo = I~ -q- Jy q-" F,~ n u F~ 
3v 16 2 

i. 

2. 

3. 
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THE DYNAMICS OF QUASISTEADY FLOW OF A LIQUID-GAS MIXTURE 

IN A CONDUIT 

V. A. Bruk UDC 532.529.5 

The one-dimensional flow of a liquid-gas mixture is investigated theoretically 
for the case of a horizontal conduit with phase transition. Approximate solu- 
tions have been obtained. 

The calculation of the nonsteady flows of gases and liquids in tubes is a complex mathe- 
matical problem and is usually accomplished by means of numerical methods [I-4]. Solutions 
in analytical form have been obtained in [5-7] and the basic quantitative relationships 
governing one-dimensional nonisothermal quasisteady gas flows have been investigated. Below 
we will examine the one-dimensional quasisteady nonisothermal flow of a liquid-~as mixture 
in a horizontal tube of constant cross section. Here we will take into consideration the 
influence of the phase transition on the process being investigated. 

The liquid concentration is characterized by the true ~p and flowrate ~ volumetric con- 
centrations [8]. We will assume that the value of ~ at the inlet ~i to the tube is small 
and, since the process is nearly steady, the quantity ~ is also small: 

r  (1) 

The quantities ~ and 6 are associated by the equality [8] 

= PVmlVs " ( 2 ) 

We will examine only the stratification of the flow which is observed at low liquid con- 
centrations ~ d 10 -2 [8]. Since the viscosity of the liquid is considerably greater than 
the viscosity of the gas and, moreover, the liquid moves near the wall of the tube as the 
flow becomes separated (in the lower portion), the velocity of the flow vs must be small in 
comparison with the gas velocity v. Then 

~ ~" (3) 

This assumption is confirmed by experimental results [8]. When B ~ 10 -2 the value of ~ is 
on the order of 10 -I According to these experimental data, however, for the small values 
of 6 that we are studying the function ~(8) is extremely close to the linear. Thus we can 
assume that 

Vs ~ = const. (4) 
Vm 

Keeping in mind the smallness of ~ and ~, instead of (4) we can write 

------- = -- = const. (5) 
v 
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